Калькулятор онлайн.
Найти (с решением) производную функции.
Этот математический калькулятор онлайн поможет вам если нужно найти производную функции. Программа решения производной не
просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс решения производной функции.
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и
экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре.
А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее
сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным
решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень
образования в области решаемых задач повышается.
Вы можете посмотреть теорию о производной функции и
правила дифференцирования и таблицу производных, т.е. список формул для нахождения
производных от некоторых элементарных функций.
Если вам нужно найти уравнение касательной к графику функции, то для этого у нас есть задача
Уравнение касательной к графику функции.
Примеры подробного решения >>
Определение. Пусть функция \( y = f(x) \) определена в некотором интервале, содержащем внутри себя точку \( x_0 \).
Дадим аргументу приращение \( \Delta x \) такое, чтобы не выйти из этого интервала. Найдем соответствующее приращение функции
\( \Delta y \) (при переходе от точки \( x_0 \) к точке \( x_0 + \Delta x \) ) и составим отношение
\( \frac{\Delta y}{\Delta x} \). Если существует предел этого отношения при \( \Delta x \rightarrow 0 \), то
указанный предел называют производной функции \( y=f(x) \) в точке \( x_0 \) и обозначают \( f'(x_0) \).
$$ \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x_0) $$
Для обозначения производной часто используют символ \( y' \).
Отметим, что \( y' = f(x) \) - это новая функция, но, естественно, связанная с функцией \( y = f(x) \), определенная во всех точках \(x\), в которых
существует указанный выше предел. Эту функцию называют так: производная функции \( y = f(x) \).
Геометрический смысл производной состоит в следующем. Если к графику функции \( y = f(x) \) в точке с абсциссой \( x=a \) можно
провести касательную, непараллельную оси \(y\), то \( f(a) \) выражает угловой коэффициент касательной:
\( k = f'(a) \)
Поскольку \( k = tg(a) \), то верно равенство \( f'(a) = tg(a) \) .
А теперь истолкуем определение производной с точки зрения приближенных равенств. Пусть функция \( y = f(x) \) имеет
производную в конкретной точке \( x \):
$$ \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x) $$
Это означает, что около точки \(x\) выполняется приближенное равенство \( \frac{\Delta y}{\Delta x} \approx f'(x) \), т.е.
\( \Delta y \approx f'(x) \cdot \Delta x \).
Содержательный смысл полученного приближенного равенства заключается в следующем: приращение функции «почти пропорционально»
приращению аргумента, причем коэффициентом пропорциональности является значение производной в заданной точке \(x\).
Например, для функции \( y = x^2 \) справедливо приближенное равенство \( \Delta y \approx 2x \cdot \Delta x \).
Если внимательно проанализировать определение производной, то мы обнаружим, что в нем заложен алгоритм ее нахождения.
Сформулируем его.
Как найти производную функции у = f(x) ?
1. Зафиксировать значение \( x \), найти \( f(x) \)
2. Дать аргументу \( x \) приращение \( \Delta x \), перейти в новую точку \( x+ \Delta x \), найти \( f(x+ \Delta x) \)
3. Найти приращение функции: \( \Delta y = f(x + \Delta x) - f(x) \)
4. Составить отношение \( \frac{\Delta y}{\Delta x} \)
5. Вычислить $$ \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} $$
Этот предел и есть производная функции в точке \(x\).
Если функция \(y=f(x)\) имеет производную в точке \(x\), то ее называют дифференцируемой в точке \(x\). Процедуру нахождения производной
функции \(y=f(x)\) называют дифференцированием функции \(y=f(x)\).
Обсудим такой вопрос: как связаны между собой непрерывность и дифференцируемость функции в точке.
Пусть функция \(y=f(x)\) дифференцируема в точке \(x\). Тогда к графику функции в точке \( M(x; \; f(x)) \) можно провести касательную,
причем, напомним, угловой коэффициент касательной равен \( f'(x) \). Такой график не может «разрываться» в точке \(M\), т. е. функция
обязана быть непрерывной в точке \(x\).
Это были рассуждения «на пальцах». Приведем более строгое рассуждение. Если функция \(y=f(x)\) дифференцируема в точке \(x\), то
выполняется приближенное равенство \( \Delta y \approx f'(x) \cdot \Delta x \). Если в этом равенстве \( \Delta x \) устремить к
нулю, то и \( \Delta y \) будет стремиться к нулю, а это и есть условие непрерывности функции в точке.
Итак, если функция дифференцируема в точке х, то она и непрерывна в этой точке.
Обратное утверждение неверно. Например: функция \( y=|x|\) непрерывна везде, в частности в точке \(x=0\), но касательная к графику
функции в «точке стыка» (0; 0) не существует. Если в некоторой точке к графику функции нельзя провести касательную, то в этой
точке не существует производная.
Еще один пример. Функция \( y=\sqrt[3]{x} \) непрерывна на всей числовой прямой, в том числе в точке \(x=0\).
И касательная к графику функции существует в любой точке, в том числе в точке \(x=0\). Но в этой точке касательная совпадает с осью \(y\),
т. е. перпендикулярна оси абсцисс, ее уравнение имеет вид \(x=0\). Углового коэффициента у такой прямой нет, значит, не существует и
\( f'(0) \)
Итак, мы познакомились с новым свойством функции — дифференцируемостью. А как по графику функции можно сделать вывод о ее
дифференцируемости?
Ответ фактически получен выше. Если в некоторой точке к графику функции можно провести касательную, не перпендикулярную оси
абсцисс, то в этой точке функция дифференцируема. Если в некоторой точке касательная к графику функции не существует или она
перпендикулярна оси абсцисс, то в этой точке функция не дифференцируема.
Правила дифференцирования
Операция нахождения производной называется дифференцированием.
При выполнении этой операции часто приходится работать с частными, суммами, произведениями функций, а также с «функциями функций»,
то есть сложными функциями. Исходя из определения производной, можно вывести правила дифференцирования, облегчающие эту работу.
Если \(C\) — постоянное число и \( f=f(x), \; g=g(x) \) — некоторые дифференцируемые функции, то справедливы следующие правила дифференцирования:
$$ C'=0 $$
$$ x'=1 $$
$$ ( f+g)'=f'+g' $$
$$ (fg)'=f'g + fg' $$
$$ (Cf)'=Cf' $$
$$ \left(\frac{f}{g} \right) ' = \frac{f'g-fg'}{g^2} $$
$$ \left(\frac{C}{g} \right) ' = -\frac{Cg'}{g^2} $$
Производная сложной функции:
$$ f'_x(g(x)) = f'_g \cdot g'_x $$
Таблица производных некоторых функций
$$ \left( \frac{1}{x} \right) ' = -\frac{1}{x^2} $$
$$ ( \sqrt{x} ) ' = \frac{1}{2\sqrt{x}} $$
$$ \left( x^a \right) ' = a x^{a-1} $$
$$ \left( a^x \right) ' = a^x \cdot \ln a $$
$$ \left( e^x \right) ' = e^x $$
$$ ( \ln x )' = \frac{1}{x} $$
$$ ( \log_a x )' = \frac{1}{x\ln a} $$
$$ ( \sin x )' = \cos x $$
$$ ( \cos x )' = -\sin x $$
$$ ( \text{tg} x )' = \frac{1}{\cos^2 x} $$
$$ ( \text{ctg} x )' = -\frac{1}{\sin^2 x} $$
$$ ( \arcsin x )' = \frac{1}{\sqrt{1-x^2}} $$
$$ ( \arccos x )' = \frac{-1}{\sqrt{1-x^2}} $$
$$ ( \text{arctg} x )' = \frac{1}{1+x^2} $$
$$ ( \text{arcctg} x )' = \frac{-1}{1+x^2} $$