Решение задач по математике онлайн

Калькулятор онлайн.
Решение логарифмических уравнений.

Этот математический калькулятор онлайн поможет вам решить логарифмическое уравнение. Программа для решения логарифмического уравнения не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения ответа.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Вы можете посмотреть теорию о логарифмической функции и логарифмах и некоторые методы решения логарифмических уравнений.

Примеры подробного решения >>

ln(b) или log(b) или log(e,b)- натуральный логарифм числа b
log(10,b) - десятичный логарифм числа b
log(a,b) - логарифм b по основанию a

Введите логарифмическое уравнение


Наши игры, головоломки, эмуляторы:

Немного теории.

Логарифмическая функция. Логарифмы

Задача 1. Найти положительный корень уравнения x4 = 81
По определению арифметического корня имеем \( x = \sqrt[4]{81} = 3 \)

Задача 2. Решить уравнение 3x = 81
Запишем данное уравнение так: 3x = 34, откуда x = 4

В задаче 1 неизвестным является основание степени, а в задаче 2 — показатель степени. Способ решения задачи 2 состоял в том, что левую и правую части уравнения удалось представить в виде степени с одним и тем же основанием 3. Но уже, например, уравнение 3x = 80 таким способом решить не удаётся. Однако это уравнение имеет корень. Чтобы уметь решать такие уравнения, вводится понятие логарифма числа.
Уравнение ax = b, где a > 0, \( a \neq 1 \), b > 0, имеет единственный корень. Этот корень называют логарифмом числа b no основанию a и обозначают logab
Например, корнем уравнения 3x = 81 является число 4, т.е. log381 = 4.

Определение. Логарифмом положительного числа b по основанию a, где a > 0, \( a \neq 1 \), называется показатель степени, в которую надо возвести число a, чтобы получить b

Например:

log28 = 3, так как 23 = 8
\( \log_3 \frac{1}{9} = -2 \), так как \( 3^{-2} = \frac{1}{9} \)
log77 = 1, так как 71 = 7

Определение логарифма можно записать так:
$$ a^{\log_a b} = b $$
Это равенство справедливо при b > 0, b > 0, \( a \neq 1 \). Его обычно называют основным логарифмическим тождеством.

Действие нахождения логарифма числа называют логарифмированием.
Действие нахождения числа по его логарифму называют потенцированием.

Вычислить log64128
Обозначим log64128 = х. По определению логарифма 64x = 128. Так как 64 = 26, 128 = 27, то 2 6x = 27, откуда 6x = 7, х = 7/6.
Ответ log64128 = 7/6

Вычислить \( 3^{-2\log_3 5} \)
Используя свойства степени и основное логарифмическое тождество, находим

$$ 3^{-2\log_3 5} = \left( 3^{\log_3 5} \right)^{-2} = 5^{-2} = \frac{1}{25}$$

Решить уравнение log3(1-x) = 2
По определению логарифма 32 = 1 - x, откуда x = -8

Свойства логарифмов

При выполнении преобразований выражений, содержащих логарифмы, при вычислениях и при решении уравнений часто используются различные свойства логарифмов. Рассмотрим основные из них.

Пусть а > 0, \( a \neq 1 \), b > 0, c > 0, r — любое действительное число. Тогда справедливы формулы:

1) loga(bc) = logab + logac

2) \( \log_a \frac{b}{c} = \log_a b - \log_a c \)
3) logabr = r logab

Десятичные и натуральные логарифмы

Для логарифмов чисел составлены специальные таблицы (таблицы логарифмов). Логарифмы вычисляют также с помощью микрокалькулятора. И в том и в другом случае находятся только десятичные или натуральные логарифмы.

Определение. Десятичным логарифмом числа называют логарифм этого числа по основанию 10 и пишут
lg b вместо log10b

Определение. Натуральным логарифмом числа называют логарифм этого числа по основанию e, где e — иррациональное число, приближённо равное 2,7. При этом пишут ln b вместо logeb

Иррациональное число e играет важную роль в математике и её приложениях. Число e можно представить как сумму:
$$ e = 1 + \frac{1}{1} + \frac{1}{1 \cdot 2} + \frac{1}{1 \cdot 2 \cdot 3} + \dots + \frac{1}{1 \cdot 2 \cdot 3 \cdot \dots \cdot n} + \dots $$

или
$$ e = \sum_{n=0}^{\infty} \frac{1}{n!} $$
$$ e \approx 2,7182818284 $$

Оказывается, что достаточно знать значения только десятичных или только натуральных логарифмов чисел, чтобы находить логарифмы чисел по любому основанию.
Для этого используется формула замены основания логарифма:

$$ \log_a b = \frac{\log_c b}{\log_c a} $$
где b > 0, a > 0, \( a \neq 1 \), c > 0, \( c \neq 1 \)

Следствия из формулы замены основания логарифма.
При c = 10 и c = e получаются формулы перехода к десятичным и натуральным логарифмам:
$$ \log_a b = \frac{\lg b}{\lg a} , \;\; \log_a b = \frac{\ln b}{\ln a} $$

Логарифмическая функция, её свойства и график

В математике и её приложениях часто встречается логарифмическая функция
y = logax
где а — заданное число, a > 0, \( a \neq 1 \)

Логарифмическая функция обладает свойствами:
1) Область определения логарифмической функции — множество всех положительных чисел.

2) Множество значений логарифмической функции — множество всех действительных чисел.

3) Логарифмическая функция не является ограниченной.

4) Логарифмическая функция y = logax является возрастающей на промежутке \( (0; +\infty) \), если a > 1,
и убывающей, если 0 < a < 1.

5) Если a > 1, то функция y = logax принимает положительные значения при х > 1,
отрицательные при 0 < x < 1.
Если 0 < a < 1, то функция y = logax принимает положительные значения при 0 < х < 1,
отрицательные при х > 1.

Ось Oy является вертикальной асимптотой графика функции y = logax


Отметим, что график любой логарифмической функции y = logax проходит через точку (1; 0).
При решении уравнений часто используется следующая теорема:

Теорема. Если logax1 = logax2 где a > 0, \( a \neq 1 \), x1 > 0, x2 > 0, то x1 = x2

Логарифмическая функция y = logax и показательная функция y = ax, где a > 0, \( a \neq 1 \), взаимно обратны.

Логарифмические уравнения

Решить уравнение log2(x+1) + log2(x+3) = 3
Предположим, что х — такое число, при котором равенство является верным, т.е. х — корень уравнения. Тогда по свойству логарифма верно равенство
log2((x+1)(x+3)) = 3
Из этого равенства по определению логарифма получаем
(x+1)(x+3) = 8
х2 + 4х + 3 = 8, т.е. х2 + 4x - 5 = 0, откуда x1 = 1, х2 = -5
Так как квадратное уравнение является следствием исходного уравнения, то необходима проверка.
Проверим, являются ли числа 1 и -5 корнями исходного уравнения.
Подставляя в левую часть исходного уравнения х = 1, получаем
log2(1+1) + log2(1+3) = log22 + log24 = 1 + 2 = 3, т.е. х = 1 — корень уравнения.
При х = -5 числа х + 1 и х + 3 отрицательны, и поэтому левая часть уравнения не имеет смысла, т.е. х = -5 не является корнем этого уравнения.
Ответ x = 1

Решить уравнение lg(2x2 - 4x + 12) = lg x + lg(x+3)
По свойству логарифмов
lg(2x2 - 4x + 12) = lg(x2 + 3x)
откуда
2x2 - 4x + 12 = x2 + 3x
x2 - 7x + 12 = 0
x1 = 3, х2 = 4
Проверка показывает, что оба значения х являются корнями исходного уравнения.
Ответ x1 = 3, х2 = 4

Решить уравнение log4(2x - 1) • log4x = 2 log4(2x - 1)
Преобразуем данное уравнение:
log4(2x - 1) • log4x - 2 log4(2x - 1) = 0
log4(2х - 1) • (log4 x - 2) = 0
Приравнивая каждый из множителей левой части уравнения к нулю, получаем:
1) log4 (2х - 1) = 0, откуда 2х - 1 = 1, х1 = 1
2) log4 х - 2 = 0, откуда log4 = 2, х2 = 16
Проверка показывает, что оба значения х являются корнями исходного уравнения.
Ответ x1 = 1, х2 = 16