Решение задач по математике онлайн

Калькулятор онлайн.
Вычисление угла между двумя плоскостями

Этот калькулятор онлайн вычисляет угол между плоскостями заданными в виде общего уравнения плоскости:
$$ Ax+By+Cz+D=0 $$

Онлайн калькулятор для вычисления угла между двумя плоскостями не просто даёт ответ задачи, он приводит подробное решение с пояснениями, т.е. отображает процесс решения для того чтобы проконтролировать знания по математике и/или алгебре.

Этот калькулятор онлайн может быть полезен учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода чисел, рекомендуем с ними ознакомиться.

Правила ввода чисел
Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5 или так 1,3

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Ввод: -2/3
Результат: \( -\frac{2}{3} \)

Целая часть отделяется от дроби знаком амперсанд: &
Ввод: -1&5/7
Результат: \( -1\frac{5}{7} \)

Введите числа A, B, C общих уравнений двух плоскостей
Числа D вводить не нужно - в расчетах они не используются

x+ y+
z+D1=0
x+ y+
z+D2=0





Наши игры, головоломки, эмуляторы:

Немного теории.

Общее уравнение плоскости

Пусть заданы:
прямоугольная система координат Oxyz,
произвольная плоскость \( \pi \);
точка \( M_0(x_0;y_0;z_0) \in \pi \);
вектор \( \vec{N}(A;B;C) \), перпендикулярный плоскости \( \pi \) (смотри рисунок).

Рассмотрим произвольную точку М(х; у; z). Точка М лежит на плоскости \( \pi \) тогда и только тогда, когда векторы \( \vec{M_0M} \) и \( \vec{N} \) взаимно перпендикулярны. Так как координаты вектора \( \vec{M_0M} \) равны \( x-x_0, \; y-y_0, \; z-z_0 \) , то в силу условия перпендикулярности двух векторов (скалярное произведение должно быть равно нулю) получаем, что точка М (х; у; z) лежит на плоскости \( \pi \) тогда и только тогда, когда

\( A(x-x_0)+B(y-y_0)+C(z-z_0)=0 \tag{1} \)
Это и есть искомое уравнение плоскости \( \pi \), так как ему удовлетворяют координаты х; у; z любой точки М, лежащей на плоскости \( \pi \), и не удовлетворяют координаты никакой точки, не лежащей на этой плоскости.

Раскрывая скобки, приведем уравнение (1) к виду
\( Ax+By+Cz+(-Ax_0-By_0-Cz_0)=0 \)
Далее, обозначая число \( -Ax_0-By_0-Cz_0 \) через \( D \), получаем

\( Ax +By+Cz+D=0 \tag{2} \)
Уравнение (2) называется общим уравнением плоскости. Таким образом, плоскость является поверхностью первого порядка, так как определяется уравнением первой степени.

Верно и обратное: всякое уравнение первой степени вида (2) определяет в заданной прямоугольной системе координат плоскость. Действительно, пусть заданы прямоугольная система координат Oxyz и уравнение \( Ax+By+Cz+D=0 \) с произвольными коэффициентами А, В, С и D, причем из коэффициентов А, В и С хотя бы один отличен от нуля. Данное уравнение заведомо имеет хотя бы одно решение \( x_0, \; y_0, \; z_0 \) ( если, например, \( C \neq 0 \), то, взяв произвольные х0, и y0, из уравнения получим: \( z_0 = -\frac{A}{C}x_0 - \frac{B}{C}y_0-\frac{D}{C} \) ).

Таким образом, существует хотя бы одна точка M0(x0; y0; z0), координаты которой удовлетворяют уравнению, т.е. Ax0+By0+Cz0+D=0. Вычитая это числовое равенство из уравнения Ax+By+Cz+D=0, получаем уравнение
A(x-x0) + B(y-y0) + C(z-z0) + D=0,
эквивалентное данному. Полученное уравнение (а стало быть, и уравнение Ax+By+Cz+D=0 ) совпадает с уравнением (1) и, значит, определяет плоскость \( \pi \), проходящую через точку M0(x0 и перпендикулярную вектору \( \vec{N}(A;B;C) \).

Вектор \( \vec{N}(A;B;C) \), перпендикулярный плоскости, называется нормальным вектором или нормалью этой плоскости.

Теорема
Если два уравнения \( A_1x+B_1y+C_1z+D_1=0 \) и \( A_2x+B_2y+C_2z+D_2=0 \) определяют одну и ту же плоскость, то их коэффициенты пропорциональны, т.е. $$ \frac{A_2}{A_1} = \frac{B_2}{B_1} = \frac{C_2}{C_1} = \frac{D_2}{D_1} $$

Угол между двумя плоскостями

Рассмотрим две плоскости \( \pi_1 \), и \( \pi_2 \), заданные соответственно уравнениями

\( A_1x+B_1y+C_1z+D_1=0, \;\; A_2x+B_2y+C_2z+D_2=0 \)

При любом расположении плоскостей \( \pi_1 \), и \( \pi_2 \) в пространстве один из углов \( \varphi \) между ними равен углу между их нормалями \( \vec{N_1}(A_1;B_1;C_1) \) и \( \vec{N_2}(A_2;B_2;C_2) \) и вычисляется по следующей формуле:
$$ \cos \varphi = \frac{ \vec{N_1} \cdot \vec{N_2}}{ |\vec{N_1}| |\vec{N_2}| } = \frac{A_1 A_2 + B_1 B_2 + C_1 C_2}{\sqrt{A_1^2 + B_1^2 + C_1^2} \; \sqrt{A_2^2 + B_2^2 + C_2^2} } \tag{3} $$

Второй угол равен \( 180^\circ -\cos \varphi \)

Условие параллельности плоскостей

Если плоскости \( \pi_1 \) и \( \pi_2 \) параллельны, то коллинеарны их нормали \( \vec{N_1} \) и \( \vec{N_2} \), и наоборот. Но тогда
$$ \frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} \tag{4} $$
Условие (4) является условием параллельности плоскостей \( \pi_1 \) и \( \pi_2 \)

Условие перпендикулярности плоскостей

Если плоскости \( \pi_1 \) и \( \pi_2 \) взаимно перпендикулярны, то их нормали \( \vec{N_1} \) и \( \vec{N_2} \) также перпендикулярны, и наоборот. Поэтому из формулы (3) непосредственно получаем условие перпендикулярности плоскостей \( \pi_1 \) и \( \pi_2 \):
\( A_1 A_2 + B_1 B_2 + C_1 C_2 = 0 \)